\(\int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx\) [61]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 119 \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {7 \text {arctanh}(\sin (c+d x))}{2 a^2 d}-\frac {16 \tan (c+d x)}{3 a^2 d}+\frac {7 \sec (c+d x) \tan (c+d x)}{2 a^2 d}-\frac {8 \sec (c+d x) \tan (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

7/2*arctanh(sin(d*x+c))/a^2/d-16/3*tan(d*x+c)/a^2/d+7/2*sec(d*x+c)*tan(d*x+c)/a^2/d-8/3*sec(d*x+c)*tan(d*x+c)/
a^2/d/(1+cos(d*x+c))-1/3*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*x+c))^2

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2845, 3057, 2827, 3853, 3855, 3852, 8} \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {7 \text {arctanh}(\sin (c+d x))}{2 a^2 d}-\frac {16 \tan (c+d x)}{3 a^2 d}+\frac {7 \tan (c+d x) \sec (c+d x)}{2 a^2 d}-\frac {8 \tan (c+d x) \sec (c+d x)}{3 a^2 d (\cos (c+d x)+1)}-\frac {\tan (c+d x) \sec (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[Sec[c + d*x]^3/(a + a*Cos[c + d*x])^2,x]

[Out]

(7*ArcTanh[Sin[c + d*x]])/(2*a^2*d) - (16*Tan[c + d*x])/(3*a^2*d) + (7*Sec[c + d*x]*Tan[c + d*x])/(2*a^2*d) -
(8*Sec[c + d*x]*Tan[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - (Sec[c + d*x]*Tan[c + d*x])/(3*d*(a + a*Cos[c + d
*x])^2)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2845

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \frac {(5 a-3 a \cos (c+d x)) \sec ^3(c+d x)}{a+a \cos (c+d x)} \, dx}{3 a^2} \\ & = -\frac {8 \sec (c+d x) \tan (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\int \left (21 a^2-16 a^2 \cos (c+d x)\right ) \sec ^3(c+d x) \, dx}{3 a^4} \\ & = -\frac {8 \sec (c+d x) \tan (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac {16 \int \sec ^2(c+d x) \, dx}{3 a^2}+\frac {7 \int \sec ^3(c+d x) \, dx}{a^2} \\ & = \frac {7 \sec (c+d x) \tan (c+d x)}{2 a^2 d}-\frac {8 \sec (c+d x) \tan (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {7 \int \sec (c+d x) \, dx}{2 a^2}+\frac {16 \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 a^2 d} \\ & = \frac {7 \text {arctanh}(\sin (c+d x))}{2 a^2 d}-\frac {16 \tan (c+d x)}{3 a^2 d}+\frac {7 \sec (c+d x) \tan (c+d x)}{2 a^2 d}-\frac {8 \sec (c+d x) \tan (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {\sec (c+d x) \tan (c+d x)}{3 d (a+a \cos (c+d x))^2} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(292\) vs. \(2(119)=238\).

Time = 1.59 (sec) , antiderivative size = 292, normalized size of antiderivative = 2.45 \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \left (-2 \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )-40 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+3 \cos ^3\left (\frac {1}{2} (c+d x)\right ) \left (-14 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+14 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {1}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}-\frac {1}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}-\frac {8 \sin (d x)}{\left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}\right )-2 \cos \left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {c}{2}\right )\right )}{3 a^2 d (1+\cos (c+d x))^2} \]

[In]

Integrate[Sec[c + d*x]^3/(a + a*Cos[c + d*x])^2,x]

[Out]

(Cos[(c + d*x)/2]*(-2*Sec[c/2]*Sin[(d*x)/2] - 40*Cos[(c + d*x)/2]^2*Sec[c/2]*Sin[(d*x)/2] + 3*Cos[(c + d*x)/2]
^3*(-14*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 14*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + (Cos[(c + d*x
)/2] - Sin[(c + d*x)/2])^(-2) - (Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^(-2) - (8*Sin[d*x])/((Cos[c/2] - Sin[c/2
])*(Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))) - 2*Cos
[(c + d*x)/2]*Tan[c/2]))/(3*a^2*d*(1 + Cos[c + d*x])^2)

Maple [A] (verified)

Time = 1.05 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.01

method result size
derivativedivides \(\frac {-\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {5}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+7 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {5}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}-7 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d \,a^{2}}\) \(120\)
default \(\frac {-\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {5}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+7 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {5}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}-7 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d \,a^{2}}\) \(120\)
parallelrisch \(\frac {\left (-42 \cos \left (2 d x +2 c \right )-42\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (42 \cos \left (2 d x +2 c \right )+42\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-60 \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\cos \left (d x +c \right )+\frac {43 \cos \left (2 d x +2 c \right )}{60}+\frac {4 \cos \left (3 d x +3 c \right )}{15}+\frac {37}{60}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{12 a^{2} d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(127\)
norman \(\frac {-\frac {13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d a}+\frac {71 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d a}-\frac {19 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d a}-\frac {\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )}{6 d a}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2} a}-\frac {7 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a^{2} d}+\frac {7 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d \,a^{2}}\) \(136\)
risch \(-\frac {i \left (21 \,{\mathrm e}^{6 i \left (d x +c \right )}+63 \,{\mathrm e}^{5 i \left (d x +c \right )}+98 \,{\mathrm e}^{4 i \left (d x +c \right )}+126 \,{\mathrm e}^{3 i \left (d x +c \right )}+97 \,{\mathrm e}^{2 i \left (d x +c \right )}+75 \,{\mathrm e}^{i \left (d x +c \right )}+32\right )}{3 d \,a^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{3}}+\frac {7 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d \,a^{2}}-\frac {7 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 a^{2} d}\) \(147\)

[In]

int(sec(d*x+c)^3/(a+cos(d*x+c)*a)^2,x,method=_RETURNVERBOSE)

[Out]

1/2/d/a^2*(-1/(tan(1/2*d*x+1/2*c)+1)^2+5/(tan(1/2*d*x+1/2*c)+1)+7*ln(tan(1/2*d*x+1/2*c)+1)-1/3*tan(1/2*d*x+1/2
*c)^3-7*tan(1/2*d*x+1/2*c)+1/(tan(1/2*d*x+1/2*c)-1)^2+5/(tan(1/2*d*x+1/2*c)-1)-7*ln(tan(1/2*d*x+1/2*c)-1))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.36 \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {21 \, {\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 21 \, {\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (32 \, \cos \left (d x + c\right )^{3} + 43 \, \cos \left (d x + c\right )^{2} + 6 \, \cos \left (d x + c\right ) - 3\right )} \sin \left (d x + c\right )}{12 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}} \]

[In]

integrate(sec(d*x+c)^3/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/12*(21*(cos(d*x + c)^4 + 2*cos(d*x + c)^3 + cos(d*x + c)^2)*log(sin(d*x + c) + 1) - 21*(cos(d*x + c)^4 + 2*c
os(d*x + c)^3 + cos(d*x + c)^2)*log(-sin(d*x + c) + 1) - 2*(32*cos(d*x + c)^3 + 43*cos(d*x + c)^2 + 6*cos(d*x
+ c) - 3)*sin(d*x + c))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x + c)^2)

Sympy [F]

\[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\int \frac {\sec ^{3}{\left (c + d x \right )}}{\cos ^{2}{\left (c + d x \right )} + 2 \cos {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

[In]

integrate(sec(d*x+c)**3/(a+a*cos(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)**3/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1), x)/a**2

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.60 \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {\frac {6 \, {\left (\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {5 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{2} - \frac {2 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac {\frac {21 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {21 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{2}} + \frac {21 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{2}}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^3/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/6*(6*(3*sin(d*x + c)/(cos(d*x + c) + 1) - 5*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a^2 - 2*a^2*sin(d*x + c)^
2/(cos(d*x + c) + 1)^2 + a^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) + (21*sin(d*x + c)/(cos(d*x + c) + 1) + sin(
d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 21*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^2 + 21*log(sin(d*x + c)/(
cos(d*x + c) + 1) - 1)/a^2)/d

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.03 \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {\frac {21 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac {21 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} + \frac {6 \, {\left (5 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2} a^{2}} - \frac {a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 21 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{6}}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^3/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(21*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - 21*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2 + 6*(5*tan(1/2*d*x
+ 1/2*c)^3 - 3*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 - 1)^2*a^2) - (a^4*tan(1/2*d*x + 1/2*c)^3 + 21*a
^4*tan(1/2*d*x + 1/2*c))/a^6)/d

Mupad [B] (verification not implemented)

Time = 14.36 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.03 \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {7\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^2\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{6\,a^2\,d}-\frac {3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{d\,\left (a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a^2\right )}-\frac {7\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a^2\,d} \]

[In]

int(1/(cos(c + d*x)^3*(a + a*cos(c + d*x))^2),x)

[Out]

(7*atanh(tan(c/2 + (d*x)/2)))/(a^2*d) - tan(c/2 + (d*x)/2)^3/(6*a^2*d) - (3*tan(c/2 + (d*x)/2) - 5*tan(c/2 + (
d*x)/2)^3)/(d*(a^2*tan(c/2 + (d*x)/2)^4 - 2*a^2*tan(c/2 + (d*x)/2)^2 + a^2)) - (7*tan(c/2 + (d*x)/2))/(2*a^2*d
)